Unidad de un anillo
2021-03-27
Sea $ (A , + , \cdot) $ un anillo con elemento unidad, todo elemento $"a" \in A $ que cumpla: $$ a \cdot a^* = a^* \cdot a = 1 $$ se llama elemento unidad.
2021-03-27
Sea $ (A , + , \cdot) $ un anillo con elemento unidad, todo elemento $"a" \in A $ que cumpla: $$ a \cdot a^* = a^* \cdot a = 1 $$ se llama elemento unidad.
2021-03-27
El elemento neutro sobre la segunda operación en un anillo (generalmente el producto)
2021-03-31
Si un anillo $ (A,+,\cdot) $ tiene elemento unidad, entonces el conjunto de las unidades de $ (A,+,\cdot) $ lo llamaremos $\mathbb{U} (A,+,\cdot) $ o $\mathbb{U} (A) $.
2021-04-02
Si un anillo $( A , + , \cdot ) $ todos los elementos salvo el neutro respecto de la suma $\{ A - 0 = \mathbb{U}(A)\} $ es una unidad se llama anillo de división.
2021-04-14
Anillo de división que es conmutativo sobre el producto.